

Formal Languages

 Chomsky Hierarchy

 Noam Chomsky categorized regular and other languages as follows:


This is a hierarchy, so every language of type 3 is also of types 2, 1 and 0; every language of type 2 is also of types 1 and 0 etc. The distinction between languages can be seen by examining the structure of the production rules of their corresponding grammar, or the nature of the automata which can be used to identify them.

Type 3: 

Regular grammars. The languages defined by Type 3 grammars are accepted by finite state automata; morphological structure and perhaps all the syntax of informal spoken dialogue is describable by regular grammars. There are two kinds of regular grammar: 

1. Right-linear (right-regular), with rules of the form [image: image1.png]or [image: image2.png]; the structural descriptions generated with these grammars are right-branching. 

2. Left-linear (left-regular), with rules of the form [image: image3]or [image: image4.png]; the structural descriptions generated with these grammars are left-branching. 

Type 2: 

Context-free grammars. The languages defined by Type 2 grammars are accepted by push-down automata; the syntax of natural languages is definable almost entirely in terms of context-free languages and the tree structures generated by them. Type 2 grammars have rules of the form [image: image5], where [image: image6.png], [image: image7]. There are special `normal forms', e.g. Chomsky Normal Form or Greibach Normal Form, into which any CFG can be equivalently converted; they represent optimizations for particular types of processing. 

Type 1: 

Context-sensitive grammars. The languages defined by Type 1 grammars are accepted by linear bounded automata; the syntax of some natural languages (including Dutch, Swiss German and Bambara), but not all, is generally held in computational linguistics to have structures of this type. Type 1 grammars have rules of the form [image: image8.png][image: image9.png][image: image10]B [image: image11]where [image: image12.png], [image: image13.png], [image: image14.png], 

or of the form [image: image15.png], where [image: image16.png]is the initial symbol and [image: image17.png]is the empty string.

Type 0: 

Unrestricted rewriting systems. The languages defined by Type 0 grammars are accepted by Turing machines; Chomskyan transformations are defined as Type 0 grammars. Type 0 grammars have rules of the form [image: image18]where [image: image19.png]and [image: image20.png]are arbitrary strings over a vocabulary V and [image: image21.png].

Finite Automata

Deterministic Finite Automata

· Developed by Robin and Scott in 1950 as a model of computer with limited memory

· It can be represented as M = (Q, ,  , q0, F)

where 
Q – set of states

 - i/p alphabet

  - stack alphabet

 - Q x   
[image: image22.wmf]®

Q

q0 – initial state

F – set of final states

Exercises

1. L = (anb : n 
[image: image23.wmf]³

0}


[image: image24.png]
2. Strings defined on {0,1}, except those containing substring 001



[image: image25.png]
3. L = { awa : w
[image: image26.wmf]Î

{a,b}*}


[image: image27.png]
4. L = {aw1aaw2a : w1w2 
[image: image28.wmf]Î

{a,b}*}


[image: image29.png]
Non Deterministic Finite Automata

· Transition Function defined as  = Q x ( x {
[image: image30.wmf]Î

}) 
[image: image31.wmf]®

 2Q

· There can be undefined transitions.

· There can be more than one transition for a specific case

Exercises

1. L = {a3} 
[image: image32.wmf]È

 {a2n}


[image: image33.png]
2. Strings defined on {0,1} ending with 11.


[image: image34.png]
3. Strings defined on {a,b} containing substring aabb


[image: image35.png]
4. Strings defined on {0,1}, except those containing two consecutive zero’s or one’s 


[image: image36.png]
NFA without 
[image: image37.wmf]Î

 transitions

For the figure given below, check whether input 011 is accepted or not



[image: image38.png]



( q0,0) 
= { q0, q1}

*( q0,01)
= ( ( q0,0),1)



= ( { q0, q1},1)



= ( q0,1) 
[image: image39.wmf]È

 ( q1,1)




= { q2} 
[image: image40.wmf]È

 { q1, q2}



= { q1, q2}

*( q0,011)
= ( *( q0,01),1)



= ( {q1, q2},1)



= ( q1,1) 
[image: image41.wmf]È

 ( q2,1)



= { q1, q2} 
[image: image42.wmf]È

 { q2}



= { q1, q2}

But the final state from the picture is q2 , hence ‘011’ is not accepted by the machine.

NFA with 
[image: image43.wmf]Î

 transitions

For the figure given below, check whether input ‘ab’ is accepted or not



[image: image44.png]

[image: image45.wmf]Î

- closure (q0) = {q0, q1, q2}  



// starting from q0 which all states we can include by taking 
[image: image46.wmf]Î

 as input

*( q0, 
[image: image47.wmf]Î

) 

=  
[image: image48.wmf]Î

- closure (q0) = {q0, q1, q2}  

*( q0, a) 

=  
[image: image49.wmf]Î

- closure ((*( q0, 
[image: image50.wmf]Î

)), a)




= 
[image: image51.wmf]Î

- closure (({q0, q1, q2}), a)




= 
[image: image52.wmf]Î

- closure (( q0,a), ( q1,a), ( q2,a) )




= 
[image: image53.wmf]Î

- closure ({q0}, , )




= 
[image: image54.wmf]Î

- closure ({q0})




= {q0, q1, q2}  

*( q0, ab) 

= 
[image: image55.wmf]Î

- closure ((*( q0, a)), b)




= 
[image: image56.wmf]Î

- closure (( q0,b), ( q1,b), ( q2,b) )




= 
[image: image57.wmf]Î

- closure (, {q1}, )




= 
[image: image58.wmf]Î

- closure (q1)




= { q1, q2}

q2 is the final state , hence ‘ab’ is accepted by the machine.

Equivalence between NFA and DFA


We are going to prove that the DFA obtained from NFA by the conversion algorithm accepts the same language as the NFA. NFA that recognizes a language L is denoted by M1 = < Q1 , [image: image59.png], q1,0 , [image: image60.png]1 , A1 > and DFA obtained by the conversion is denoted by M2 = < Q2, [image: image61.png], q2,0 , [image: image62.png]2 , A2 >



First we are going to prove by induction on strings that [image: image63.png]1*( q1,0 , w ) = [image: image64.png]2*( q2,0 , w ) for any string w. When it is proven, it obviously implies that NFA M1 and DFA M2 accept the same strings. 

Theorem: For any string w, [image: image65.png]1*( q1,0 , w ) = [image: image66.png]2*( q2,0 , w ) . 

Proof: This is going to be proven by induction on w.

Basis Step: For w = [image: image67.png], 
[image: image68.png]2*( q2,0 , [image: image69.png]) = q2,0 by the definition of [image: image70.png]2* . 
                          = { q1,0 } by the construction of DFA M2 . 
                          = [image: image71.png]1*( q1,0 , [image: image72.png]) by the definition of [image: image73.png]1* . 
Inductive Step: Assume that [image: image74.png]1*( q1,0 , w ) = [image: image75.png]2*( q2,0 , w ) for an arbitrary string w. --- 



 Induction Hypothesis 

For the string w and an arbitrry symbol a in [image: image76.png], 
[image: image77.png]1*( q1,0 , wa ) = [image: image78.png]
                          = [image: image79.png]2( [image: image80.png]1*( q1,0 , w ) , a ) 
                          = [image: image81.png]2( [image: image82.png]2*( q2,0 , w ) , a ) 
                          = [image: image83.png]2*( q2,0 , wa ) 

Thus for any string w [image: image84.png]1*( q1,0 , w ) = [image: image85.png]2*( q2,0 , w ) holds.

Conversion of  NFA to DFA 

Steps 

1. Create vertex {q0} where q0 is the start state of the given NFA. Add this to set gD

2. Repeat the following steps until no more edges are missing

i. Take {qi, qj,.., qk} of gD that has no transition for a
[image: image86.wmf]Î



ii. Compute *( qi, a), *( qj, a), …. , *( qk, a)

iii. Union * to {ql, qm,.., qn}

iv. Create vertex {ql, qm,.., qn} if doesn’t exist

v. Add to gD to an edge from {qi, qj,.., qk} to {ql, qm,.., qn} with label a.

3. Every state of gD with qf 
[image: image87.wmf]Î

 F is a final state.

4. Machine accepts 
[image: image88.wmf]Î

 if q0 is a final state.

Exercises

Draw the equivalent DFA for the NFA’s given below.


[image: image89.png]

[image: image90.wmf]ß




   
[image: image91.png]

[image: image92.png]
Reduction of states in finite automata

Steps

1. Remove all inaccessible states by traversing simples path in the graph

2. Consider (p,q) , if p
[image: image93.wmf]Î

 F and q
[image: image94.wmf]Ï

F or vice versa those states are considered as distinguishable

3. Repeat the following 

i.
For all pairs (p,q) and a
[image: image95.wmf]Î

, compute ( p,a) = pa and (q,a) = qa. If (pa, qa) is distinguishable (p,q) is also distinguishable.

Exercises


[image: image96.png]
Set 1



Set 2

{q0, q1, q2}


{q3, q4}

(q0, q1)
  

1. (q0, 0)  = q1

(q1, 0)  = q2

2. (q0, 1)  = q2

(q1, 1)  = q3


Since q3  is a final state and q2 is a non final state, (q0, q1) is distinguishable for input 1

(q0, q2)
  

1. (q0, 0)  = q1

(q2, 0)  = q2

2. (q0, 1)  = q2

(q2, 1)  = q4


Since q4is a final state and q1is a non final state, (q0, q2) is distinguishable for input 1

(q1, q2)
  

1. (q1, 0)  = q2

(q2, 0)  = q2

2. (q1, 1)  = q3

(q2, 1)  = q4


Since (q1, q2) fail for both inputs (q1, q2 ) is Indistinguishable.

(q3, q4)
  

1. (q3, 0)  = q3

(q4, 0)  = q4

2. (q3, 1)  = q3

(q4, 1)  = q4


Since (q3, q4) fail for both inputs (q3, q4) is Indistinguishable.

Distinguishable = { q0}

Indistinguishable = {q1, q2} , { q3, q4}

DFA after reduction is


[image: image97.png]

[image: image98.png]
Set 1



Set 2

{q0, q1, q2, q3}


{q4}

(q0, q1)
  

1. (q0, 0)  = q1

(q1, 0)  = q2

2. (q0, 1)  = q3

(q1, 1)  = q4


Since q4  is a final state and q3 is a non final state, (q0, q1) is distinguishable for input 1

(q0, q2)
  

1. (q0, 0)  = q1

(q2, 0)  = q2

2. (q0, 1)  = q3

(q2, 1)  = q4


Since q4  is a final state and q3 is a non final state, (q0, q2) is distinguishable for input 1

(q0, q3)
  

1. (q0, 0)  = q1

(q3, 0)  = q2

2. (q0, 1)  = q3

(q3, 1)  = q4


Since q4  is a final state and q3 is a non final state, (q0, q3) is distinguishable for input 1

(q1, q2)
  

1. (q1, 0)  = q2

(q2, 0)  = q1

2. (q1, 1)  = q4

(q2, 1)  = q4


Since (q1, q2) fail for both inputs (q1, q1) is Indistinguishable.

(q2, q3)
  

1. (q2, 0)  = q1

(q3, 0)  = q2

2. (q2, 1)  = q4

(q3, 1)  = q4


Since (q2, q3) fail for both inputs (q2, q3) is Indistinguishable

(q1, q3)
  

3. (q1, 0)  = q2

(q3, 0)  = q2

4. (q1, 1)  = q4

(q3, 1)  = q4


Since (q1, q3) fail for both inputs (q1, q3) is Indistinguishable

Distinguishable = {q0}, {q4}

Indistinguishable = {q1, q2 , q3 }

DFA after reduction is


[image: image99.png]
Finite Automata with output

Moore machine

A finite state machine that produces an output for each state. Output depends on present state, it is independent of current input. It can be represented as

M = (Q, , , , , q0)

where 
 - output alphabet

 - mapping function from Q to 

Figure below shows Moore machine when given ‘bababbb’ as input producing ‘01100100’ as output.


[image: image100.png]
Mealy machine

A finite state machine which produces an output for each transition. Output depends on present state and current input. It can be represented as

M = (Q, , , , , q0)

where 
 - output alphabet


 - mapping function from Q x   to 


[image: image101.png]
Converting Mealy machine to Moore machine

Exercises

Convert the following mealy machine two equivalent moore machine


[image: image102.png]





[image: image103.wmf]ß



[image: image104.png]


[image: image105.png]






[image: image106.wmf]ß





[image: image107.png]

[image: image108.png]
Two way Finite Automata

A finite state machine which can move its head in both direction. It can be represented as

M = (Q, , , q0 ,F)

where 
 - mapping function from Q x   to Q x {L,R} 

Exercise

Consider a two way finite machine with final state q1 and transitions as given below. Check the acceptance of input sequence 101001


0
1

q0
(q0,R)
(q1,R)

q1
(q1,R)
(q2,L)

q2
(q0,R)
(q2,L)

q0101001 
[image: image109.png] 1q101001 
[image: image110.png]  10q11001 
[image: image111.png]  1q201001 
[image: image112.png]  10q01001 
[image: image113.png] 101q1001


 
    
[image: image114.png] 1010q101 
[image: image115.png]  10100 q11 
[image: image116.png] 1010q201 
[image: image117.png]  10100q01 
[image: image118.png] 101001q1

Since final state reached is q1, the input is accepted by the machine.

Regular Expressions

A regular expression is a formula for matching strings that follow some pattern.

Pumping lemma for regular expressions

As per Pigeonhole principle, if there are n objects and m boxes, one box have more than one object. Pumping lemma is based on this principle. It  states that

· If an infinite language is regular, it can be defined by a dfa. 

· The dfa has some finite number of states (say, n). 

· Since the language is infinite, some strings of the language must have length > n. 

· For a string of length > n accepted by the dfa, the walk through the dfa must contain a cycle. 

· Repeating the cycle an arbitrary number of times must yield another string accepted by the dfa. 

The pumping lemma for regular languages is a way of proving that a given (infinite) language is not regular. It can be briefed as below.

· Assume the language L is regular. 

· By the pigeonhole principle, any sufficiently long string in L must repeat some state in the dfa; thus, the walk contains a cycle. 

· Show that repeating the cycle some number of times ("pumping" the cycle) yields a string that is not in L. 

· Conclude that L is not regular. 

If L is an infinite regular language, then there exists some positive integer m such that any string w [image: image119.png]L whose length is m or greater can be decomposed into three parts, xyz, where 

· |xy| is less than or equal to m, 

· |y| > 0, 

· wi = xyiz is also in L for all i = 0, 1, 2, 3, .... 

It means that

· m is a (finite) number chosen so that strings of length m or greater must contain a cycle. Hence, m must be equal to or greater than the number of states in the dfa. Remember that we don't know the dfa, so we can't actually choose m; we just know that such an m must exist. 

· Since string w has length greater than or equal to m, we can break it into two parts, xy and z, such that xy must contain a cycle. We don't know the dfa, so we don't know exactly where to make this break, but we know that |xy| can be less than or equal to m. 

· We let x be the part before the cycle, y be the cycle, and z the part after the cycle. (It is possible that x and z contain cycles, but we don't care about that.) Again, we don't know exactly where to make this break. 

· Since y is the cycle we are interested in, we must have |y| > 0, otherwise it isn't a cycle. 

· By repeating y an arbitrary number of times, xy*z, we must get other strings in L. 

· If, despite all the above uncertainties, we can show that the dfa has to accept some string that we know is not in the language, then we can conclude that the language is not regular. 

Normal Forms

Chomsky Normal Form

A grammar is in Chomsky Normal Form if all productions are of the form 

A[image: image120.png]BC | a

where a [image: image121.png] T and  B,C [image: image122.png]V* and there is no unit production.

Greibach Normal Form

A grammar is in Greibach Normal Form if all productions are of the form 

A[image: image123.png]ax

where a [image: image124.png] T and x [image: image125.png]V*.

To reduce a grammar into GNF form, the following actions have to be performed.

Construct a grammar CFG, G in CNF generating the CFL L. Rename the variables in V as {A1 A2 .. An } with start symbol as A1.

Step 1


Modify the productions, such that Ai 
[image: image126.wmf]®

 Aj  where i < j.

Step 2

If  Ak 
[image: image127.wmf]®

 Aj  is a production with j < k, generate a new set of productions by substituting for Aj ,  the right hand side of the Aj  production. By repeating this we obtain the production of the form Ak 
[image: image128.wmf]®

 Al ,   k
[image: image129.wmf]£

l. The production with l = k are replaced by introducing new variable. By repeating the above steps for each variable we obtain the required form.

Eg.

S 
[image: image130.wmf]®

 aSb  |  bSa | a | b 

Modifying the grammar into CNF form

S 
[image: image131.wmf]®

 DaSDb  |  DbSDa | a | b

Da 
[image: image132.wmf]®

 a

Db 
[image: image133.wmf]®

 b

Rename variables S , Da , Db as A1, A2, A3.

A1
[image: image134.wmf]®

 A2 A1A3|  A3 A1 A2

A1
[image: image135.wmf]®

 a

A2
[image: image136.wmf]®

 a

A3
[image: image137.wmf]®

 b

All the A1 productions are of the form Ai 
[image: image138.wmf]®

 Aj  i < j 

A1
[image: image139.wmf]®

 A2 A1A3|  A3 A1 A2

Convert this productions of the form

Ai 
[image: image140.wmf]®

 a where a 
[image: image141.wmf]Î

 T and  A 
[image: image142.wmf]Î

 V* and substititute for left most variables, we will get the required form

A2
[image: image143.wmf]®

 a



A3
[image: image144.wmf]®

 b


A1
[image: image145.wmf]®

 A2 A1A3


A1
[image: image146.wmf]®

 A3 A1 A2

          a A1A3  


A1  b A1 A2

The resulting grammar in GNF is 

A1
[image: image147.wmf]®

 aA1A3 |  b A1 A2 | a | b 

A2
[image: image148.wmf]®

 a

A3
[image: image149.wmf]®

 b

Pushdown Automata (NPDA)

Pushdown Automatas are finite automatons with a stack. The languages which  can be recognized by PDA are precisely the context free languages. It can be represented as 

M = (Q, , , , q0, z, F)


where 
Q – set of states

 - i/p alphabet

  - stack alphabet

 - Q x (  {
[image: image150.wmf]Î

} ) x 

z – start stack symbol

F – set of final states


[image: image151.png]
Exercises

Write down the PDA for the following languages

1. L = {anbn : n 
[image: image152.wmf]³

0} 
[image: image153.wmf]È

 {a}

M = {{q0, q1, q2, q3}, {a,b}, {0,1}, , q0, z,{ q3}}

(q0 , a, 0)  =  {(q0 , 10), (q3 , 
[image: image154.wmf]Î

)}  

(q0 , 
[image: image155.wmf]Î

, 0)  =  (q3 , 
[image: image156.wmf]Î

) 

(q1 , a, 1)  =  (q1 , 11)  

(q1 , b, 1)  =  (q2 , 
[image: image157.wmf]Î

)

(q2 , b, 1)  =  (q2 , 
[image: image158.wmf]Î

)

(q2 , 
[image: image159.wmf]Î

, 0)  =  (q3 , 
[image: image160.wmf]Î

)

2. L = {w 
[image: image161.wmf]Î

{a,b}* : na(w) = nb(w)}

M = {{q0, qf}, {a,b}, {0,1,z}, , q0, z,{qf }}

(q0 , 
[image: image162.wmf]Î

, z)  =  (qf , z)  

(q0 , a , z)  =  (q 0, 0z) 

(q0 , b , z)  =  (q3 , 1z) 

(q0 , b , 1)  =  (q0 , 11)

(q0 , a, 0)  =  (q0 , 00)  

(q0 , b, 0)  =  (q0 , 
[image: image163.wmf]Î

)

(q0 , a, 1)  =  (q0 , 
[image: image164.wmf]Î

)

3. L = {wwR  : w 
[image: image165.wmf]Î

{a,b}+ }

M = {{q0, q1, q2}, {a,b}, {a,b,z}, , q0, z,{q2 }}

(q0 , a , a)  =  (q 0, aa)

(q0 , b, a)  =  (q0, ba) 

(q0 , a, b)  =  (q0 , ab) 

(q0 , b , b)  =  (q0 , bb)

(q0 , a, z)  =  (q0 , az)  

(q0 , b, z)  =  (q0 , bz)

(q1 , a, a)  =  (q1 , 
[image: image166.wmf]Î

)  

(q1 , b, b)  =  (q1 , 
[image: image167.wmf]Î

)

(q1 , 
[image: image168.wmf]Î

, z)  =  (q2 , z)  

Pushdown Automata and Context free grammars


Every CFL has a equivalent NPDA. 

Steps

1. Convert the given CFL into GNF.

2. Push the variables in the right hand side of the productions into the stack.

3. Push start symbol into the stack.

4. To simulate A
[image: image169.wmf]®

ax, A should be the top element in the stack and a should be the current input.

5. Replace A by x.

Exercises

1. S
[image: image170.wmf]®

aSA | a

A
[image: image171.wmf]®

bB

B
[image: image172.wmf]®

b

(q0 , 
[image: image173.wmf]Î

 , z)  =  (q 1, Sz)
// Start symbol on top of stack

(q1 , a, S)  =   {(q1, SA) ,( q1, 
[image: image174.wmf]Î

)}
// Other productions

(q1 , b, A)  =  (q1, B) 

(q1, b , B)  =  (q1 , 
[image: image175.wmf]Î

)

(q1, 
[image: image176.wmf]Î

 , B)  =  (q2 , 
[image: image177.wmf]Î

)
//
Final State

2. S
[image: image178.wmf]®

aA 

A
[image: image179.wmf]®

aABC | bB | a

B
[image: image180.wmf]®

b

C
[image: image181.wmf]®

c

(q0 , 
[image: image182.wmf]Î

 , z)  =  (q 1, Sz)


(q1 , a, S)  =   (q1, A)

(q1 , a, A)  =   {(q1, ABC) ,( q1, C)}


(q1 , b, A)  =  (q1, B) 

(q1, b , B)  =  (q1 , 
[image: image183.wmf]Î

)

(q1, c , C)  =  (q1 , 
[image: image184.wmf]Î

)

(q1, 
[image: image185.wmf]Î

 , B)  =  (q2 , z)


Deterministic Pushdown Automata

· Can have dead configurations

· Can have 
[image: image186.wmf]Î

 transitions

Exercise

1. L = {anbn : n 
[image: image187.wmf]³

0}

(q0 , a , 0)  =  (q 0, 10)

(q1 , a, 1)  =  (q1, 11) 

(q1 , b, 1)  =  (q2 , 
[image: image188.wmf]Î

) 

(q2 , b , 1)  =  (q2 , 
[image: image189.wmf]Î
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Recursively enumerable (type 0)



Context sensitive grammar (type 1)



         Context free grammar (type 2)



Regular grammar (type 3)
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_120554824.unknown

_120569036.unknown

_120569356

_120770960

_120771280.unknown

_120771600

_120771920.unknown

_120772240

_120772880.unknown

_120773200.unknown

_120773520

_120836180

_120836820

_120837140

_120837460.unknown

_120837780

_120838100.unknown

_120838420.unknown

_120838740.unknown

_120839060.unknown

_120839380.unknown

_120839700

_120942680.unknown

_120943000.unknown

_120943320.unknown

_120943640.unknown

_120943960.unknown

_120944280.unknown

_120944600.unknown

_120944920.unknown

_120945240.unknown

_120945560.unknown

_120945880.unknown

_120946200.unknown

_319438940.unknown

_319439260.unknown

_319439580.unknown

_319439900.unknown

_319440220

_319440540.unknown

_319440860

_319441180

_319441500.unknown

_319441820.unknown

_319442140.unknown

_359759968

_359760288

_359760608

_359760928

_359761248

_359761568

_359762208

_359762528.unknown

_359762848

_359763168

_359763488.unknown

_431005796

_431006116

_431006756

_431007076

_431007396

_431007716

_431008036

_431008356

_431008676

_431008996

_431009316

_505462888.unknown

_505464168.unknown

_505464488.unknown

_505464808.unknown

_505465128.unknown

_505465448.unknown

_505465768.unknown

_505466088.unknown

_505466408.unknown

_545624172.unknown

_545624492.unknown

_545624812.unknown

_545625132.unknown

_545625452.unknown

_545625772.unknown

_545626092.unknown

_545626412.unknown

_545626732.unknown

_545627052.unknown

_545627372.unknown

_545627692.unknown

_598786160.unknown

_598786480.unknown

_598786800.unknown

_598787120.unknown

_598787440

_598788080.unknown

_598788400.unknown

_598788720.unknown

_598789040.unknown

_598789360.unknown

_598789680.unknown

_683810932.unknown

_683811252.unknown

_683811572.unknown

_683811892.unknown

_683812212.unknown

_683812532.unknown

_683812852.unknown

_683813172.unknown

_683813492.unknown

_683813812.unknown

_683814132.unknown

_683814452.unknown

_731693176.unknown

_731693496.unknown

_731693816.unknown

_731694136.unknown

_731694456.unknown

_731694776.unknown

_731695096.unknown

_731695416.unknown

_731695736.unknown

_731696056.unknown

_731696376.unknown

_731696696.unknown

_816713852.unknown

_816714172.unknown

_816714492.unknown

_816714812.unknown

_816715132.unknown

_816715452.unknown

_816715772.unknown

_816716092.unknown

_816716412.unknown

_816716732.unknown

_120836500

_120770640.unknown

_120567116.unknown

